Kinerja Algoritma Pelatihan Levenberg-Marquardt dalam Variasi Banyaknya Neuron pada Lapisan Tersembunyi
نویسندگان
چکیده
منابع مشابه
Levenberg-Marquardt Learning Algorithm for Integrate-and-Fire Neuron Model
In this paper, Levenberg-Marquardt (LM) learning algorithm for a single Integrate-and-Fire Neuron (IFN) is proposed and tested for various applications in which a neural network based on multilayer perceptron is conventionally used. It is found that a single IFN is sufficient for the applications that require a number of neurons in different hidden layers of a conventional neural network. Sever...
متن کاملProbabilistic Latent Semantic Analysis (PLSA) untuk Klasifikasi Dokumen Teks Berbahasa Indonesia
Abstrak Salah satu pekerjaan yang ada di dalam mengelola dokumen adalah bagaimana menemukan intisari dari dokumen. Topic modeling merupakan teknik yang dikembangkan untuk menghasilkan representasi dokumen berupa kata-kata kunci dari dokumen. Kata-kata kunci tersebut yang akan digunakan dalam proses pengindeksan serta pencarian dokumen untuk ditemukan kembali sesuai kebutuhan pengguna. Pada pene...
متن کاملLevenberg Marquardt ( LM ) Algorithm 1 –
1 – Introduction Parameter estimation for function optimization is a well established problem in computing, as there are countless applications in practice. For this work, we will focus specifically in implementing a distributed and parallel implementation of the Levenberg Marquardt algorithm, which is a well established numerical solver for function approximation given a limited data set. Para...
متن کاملImproved computation for Levenberg-Marquardt training
The improved computation presented in this paper is aimed to optimize the neural networks learning process using Levenberg-Marquardt (LM) algorithm. Quasi-Hessian matrix and gradient vector are computed directly, without Jacobian matrix multiplication and storage. The memory limitation problem for LM training is solved. Considering the symmetry of quasi-Hessian matrix, only elements in its uppe...
متن کاملKlasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JUITA : Jurnal Informatika
سال: 2019
ISSN: 2579-8901,2086-9398
DOI: 10.30595/juita.v7i2.5863